

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 644605.

 SAFURE

SAFety and secURITY by dEsign for interconnected mixed-critical cyber-physical systems

Security Risks posed by Temperature Measurements in Mobile Platforms

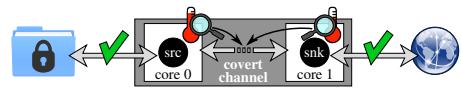
P. Miedl, R. Ahmed & L. Thiele

ETHZ

A different point of view on thermal security

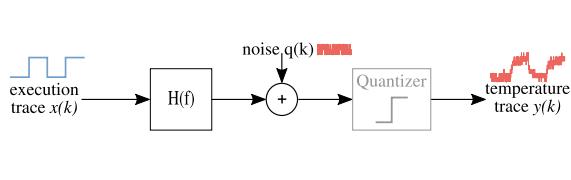
- MPSoCs feature thermal sensors to prevent overheating
- Thermal information easily accessible for thermal management
- Temperature depends on utilization/application

Can data leakage through thermal information be a security threat?


We analyse two thermal data leakage channels

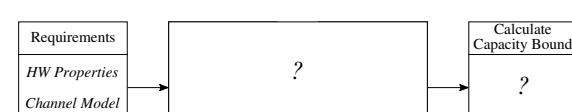
Thermal Covert Channel ^{†‡}	vs.	Thermal Task Inference Side Channel
Covert data transmission		No active data sharing
Active data sharing		Observation of unaware system
Malicious applications leak information to third party		Malicious application infers information through observation

[†] Bartschi, D.B., Miedl, P. and Thiele, L., 2016, April. On the capacity of thermal covert channels in multicore. In Proceedings of the Eleventh European Conference on Computer Systems (p. 24). ACM.


[‡] Seiber, M., Miedl, P., and Thiele, P.D.L., 2017. UnCover3: Covert Channel Attacks on Commercial Multicore Systems. Technical Report

Covert channel threat model and threat classification

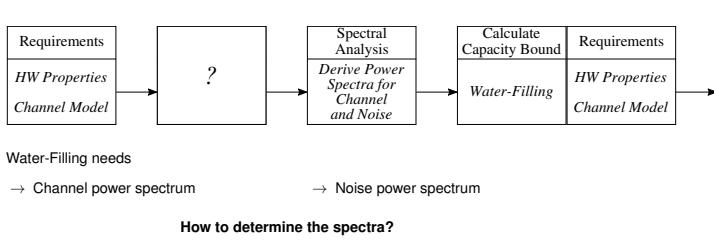
Find a capacity bound Present an implementation


Linear discrete-time channel model with additive noise

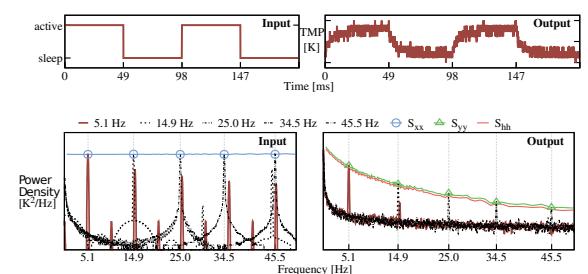
$x(k) = 0 \Rightarrow \text{src app idle}$

$x(k) = 1 \Rightarrow \text{src app active}$

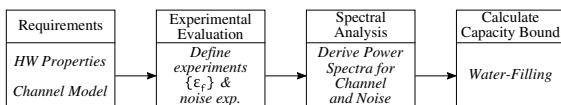
Methodology to determine the channel capacity



Shannon-Hartley theorem:

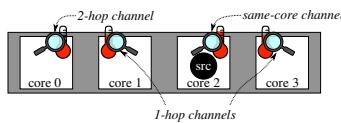

$$C = B \cdot \log_2 \left(\frac{S}{N} \right) \text{ [bps]}$$

⇒ Determining B not possible due to channel complexity


Methodology to determine the channel capacity

Determining the channel power spectrum $S_{hh}(f) = S_{yy}(f)/S_{xx}(f)$

Methodology to determine the channel capacity

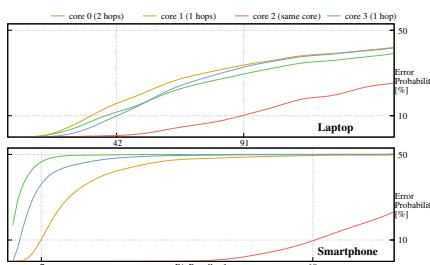


Estimation of the noise power spectrum

- Only needs one experiment
- Is not input dependent

Ability to determine capacity of complex covert channel

Assumption of linear core-alignment


Experimental evaluation on two distinct platforms...

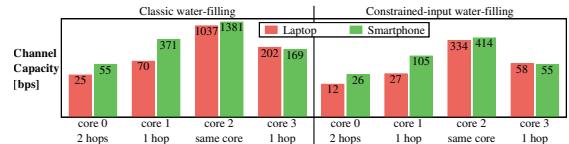
- Odroid XU-3 representative of smartphones
- Lenovo T440s representative of business laptops

...under controlled conditions

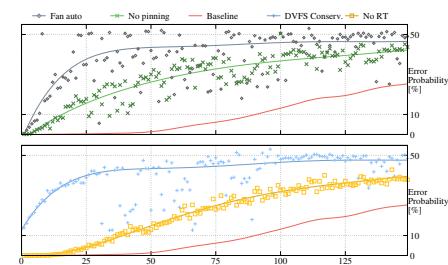
- ✓ Core pinning
- ✓ Maximum fan speed
- ✓ Real time scheduling
- ✓ Fixed operating frequency
- ✓ Limited wakeup latency
- ✓ Ambient temperature $\approx 23^{\circ}\text{C}$

Experimental evaluation shows feasibility of channel

Leaked data 13'432 bits from a virtual machine under realistic conditions


Laptop with native Ubuntu and Ubuntu in a VirtualBox

System idle but no controlled environment


Advanced data encoding

Leaked information included a private SSH Key

Application Level Throughput (Goodput) of 1.358 bps

Capacity estimation \Rightarrow Thermal covert channel is security threat

High influence of external factors on channel performance

We analyse two thermal data leakage channels

Thermal Covert Channel^{†‡}

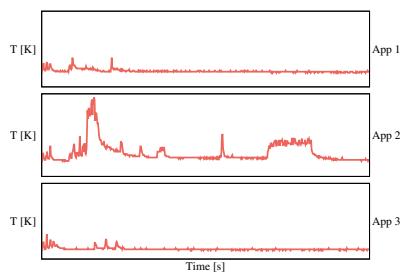
vs. Thermal Task Inference Side Channel

Covert data transmission

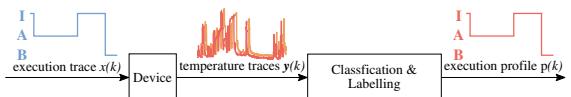
No active data sharing

Active data sharing

Observation of unaware system

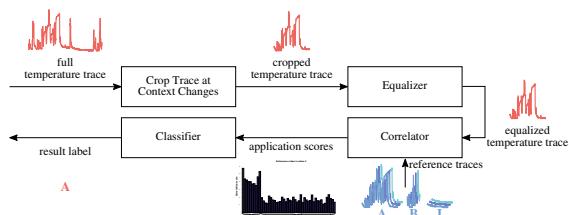

Malicious applications leak information to third party

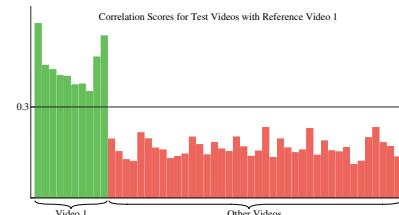
Malicious application infers information through observation


[†] Barolini, D.B., Miedl, P. and Thiele, L., 2016, April. On the capacity of thermal covert channels in multicore. In Proceedings of the Eleventh European Conference on Computer Systems (p. 24). ACM.

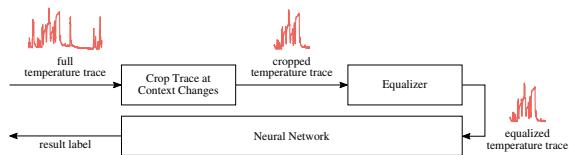
[‡] Selber, M., Miedl, P., and Thiele, P.D., 2017. UnCover3: Covert Channel Attacks on Commercial Multicore Systems. Technical Report

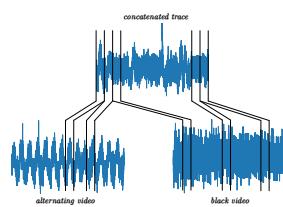
Different applications cause different thermal patterns


Basic concept thermal task inference side channel


Possible outcomes:

- Allow advanced platform/user profiling
- New attack vector for side channel attacks


Feasibility study for thermal task inference using correlation on a Dragonboard 810


Thermal task inference using correlation with videos is feasible

Feasibility study for thermal task inference using neural networks

Feasibility study using simple neural networks and augmented thermal data from Dragonboard 810

Simple neural networks work for augmented data but show weaknesses

Very simple dataset

Very simple networks using LSTM (recurrent neural networks) or dense layers

Trace classification possible \Rightarrow Feasibility proven

Exponential growth for number of parameters & training time

Many open questions on thermal task inference

- Does it work for applications instead of videos?
- What are thermal features and thermal patterns?
- Are there relevant statistical measures?
- Can we use the temporal connection between features?
- Can we apply advanced machine learning techniques?

Accessible thermal information poses a security threat

- Detailed analysis of thermal covert channel
- Feasibility for thermal task inference side channel
- Thermal information is too easy to access

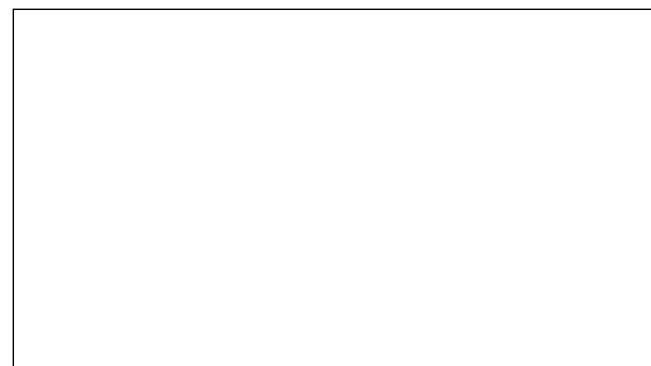
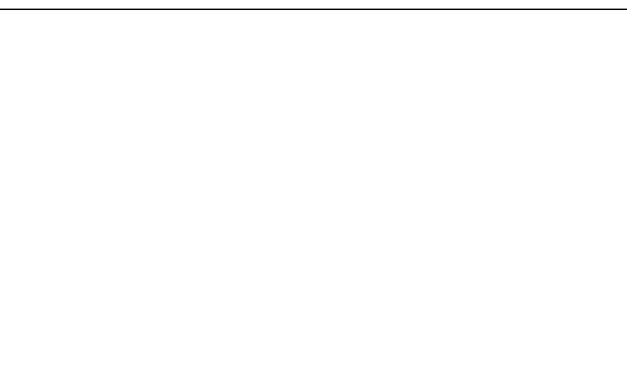
Can data leakage through thermal information be a security threat? YES!

SAFURE Grant Agreement No. 644080

"This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 644080."

"This work was supported by the Swiss State Secretariat for Education Research and Innovation (SERI) under contract number 15.0025. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the Swiss Government."

If you need further information, please contact the coordinator:
TECHNIKON Forschungs- und Planungsgesellschaft mbH
Burgplatz 3a, 9500 Villach, AUSTRIA
Tel: +43 4242 233 55, Fax: +43 4242 233 57
E-Mail: coordination@safure.eu



The information in this document is provided as is, and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof takes the information at his sole risk and liability.

17th January 2018

2 / 2

SAFURE

SAFety and securIty by dEsign for interconnected mixed-critical cyber-physical systems

