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Standard Ethernet Summary

o State of the art

— Standard Ethernet, IEEE802.1
* Weighted Round Robin: alternating transmission
— Ethernet Quality of Service (QoS), IEEE802.1Q
 Static priority non-preemptive: priority based transmission
— Audio/Video Bridgeing, IEEE802.1Qas
» Credit based shaper: bandwidth guarantees for traffic classes

« Mixed critical traffic - provide isolation between streams

« Desired improvements
— Isolation / freedom from interference
— Low and bounded latencies
— Simple verification
— Handling of transmission errors
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Real-time Ethernet — TSN

* Ethernet TSN (Time-Sensitive Networks)
— Continuation of the AVB group
— Set of standards (partially and fully completed)
— Accurate time synchronisation
— QoS (bounded latency, improved reliability)
— Protection (against derouted and rogue traffic)
— Scheduled traffic

«  SAFURE relevant TSN efforts:

— Traffic shapers, IEEE802.1Qbv
« Burst limiting shaper
« Time aware shaper
 Peristaltic shaper

— Frame preemption, IEEE802.1Qbu
— Frame replication, IEEE802.1CB
— Stream filtering, IEEE802.1Qci
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Limitations of non-preemptive

transmission schemes

- Standard Ethernet: Non-preemptive transmissions
— Lower priority (LP) blocking
— Longest Ethernet frame: 1500 Byte
— Long blocking times: 120us @ 100Mbit/s per switch
- Big jitter

Frame arrivals L
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(non-preemptive) > R:,

Solution:

Allow preemption of low priority frames
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Frame preemption 1/2

IEEE 802.3br and IEEE 802.1Qbu introduce frame preemption to
Ethernet

— Two MAC interfaces Express and preemptable
— Only one level of preemption

Express traffic
classes
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Frame preemption 2/2

* Priority based transmission (IEEE802.1Q)

NP

Performance gain due to frame preemption*®

12us vs 120us @ 100Mbit/s per switch

- Factor 10 improvement

* Thiele and Ernst. “Formal Worst-Case Performance Analysis of Time-Sensitive Ethernet
with Frame Preemption”. ETFA 2016 6
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Ethernet TSN — Time-Aware Shaper
(TSN/TAS)

Temporal isolation of two traffic classes via time segments

— Critical traffic scheduled in time-triggered segments
* FIFO order

« Guard bands prevent segment violations
— Guard band length equal to longest possible frame size

— Non-critical traffic scheduled during remaining time

* Fixed-priority based and FIFO within same priority class
— Switch synchronization necessary for good performance
— Formal worst-case timing analysis performed*

l N\ N\ |

guard band Time-triggered segment Segment for other
for critical-traffic (non-critical) traffic

* Thiele et al., “Formal Worst-Case Timing Analysis of Ethernet TSN’s Time-Aware and Peristaltic
Shapers”. VNC 2015 7

SAFety and secURIity by dEsign for interconnected mixed-critical cyber-physical systems



TSN/TAS — Frame Preemption

- TAS/TSN (IEEE802.1Qbv)

Performance gain due to frame preemption*®

(TSN/TAS)
12ps vs 120us @ 100Mbit/s per switch

- Factor 10 improvement

i

i > Rep

Reduced Guard band

Preemption overhead

* Thiele and Ernst, “Formal Worst-Case Performance Analysis of Time-Sensitive
Ethernet with Frame Preemption”. ETFA 2016 8
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FRER

« Frame replication and elimination for increased
reliablity (FRER)

« TSN standard under IEEE802.1CB

* Increased reliablity and reduced packet loss rate
under transmission errors

ECU1 ECU 2

. Frame elimination (\ ) Frame replication
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FRER principle

1. Network element receives FRER-proctected
stream

. Replication of stream in traversed element
. Sending frame copies via redundant paths
. Merge streams / Elimination of copies

. Forwarding a single frame

o b~ WODN

Hofmann et al. ,Formal Worst-case Analysis of TSN Ethernet Frame Replication and Elimination for

Reliabilty”, Under submission 10
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FRER — benefits

Error rate: 10e-10 BER -
Transmission speed: 100Mb/s /\V
Frame size: 1200 Byte
> P1
100 % 4

Successful transmission

= m >
1009 106 1010 #frames [log,]
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Analysis and simulation tools

Formal worst-case timing analysis: pyCPA
Simulation environment: OMNeT++

All features implemented in either pyCPA or OMNET.
— Some in both

Traces o
Buffer levels

04
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End-to-end delay distributions
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Future work

Desired features for next-generation networks
— Dynamic behaviour
— Improved safety (resilience to failures)
— Improved security (intrusion detection)

TSN lacks solutions to handle dynamics

Software defined networking (SDN) a promising approach
— Centralalised network runtime management
— Already successfully applied in other domains (e.g. OpenFlow)

Ongoing research topic*

Future research directions
— Intrusion detection / run-time admission control
— Fail-operational behaviour
— Bootstrapping procedures

* Thiele and Ernst, “Formal Analysis Based Evaluation of Software Defined Networking
for Time-Sensitive Ethernet”. DATE 2016 13
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The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.
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Back up slides — TSN/TAS




TSN/TAS: Ogy -
significantly worse than -Sh aped Traffic

std. Eth., if unsynchronized
< 2 ees on 121 paths through the network

Only use TSN/TAS
with synchronization!
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Back up BLS Shaper




The Burst-Limiting Shaper 1/3

Block traffic class
when H, is reached

Credit is replenished

during interference Keep credit at H, while last

frame is in transmission
credit

Credit is replenished while

Upper credit
PP ! blocked by the shaper

threshold H I

Enable traffic class
when L, is reached

Lower credit
threshold L 1

terfering traffic

Analyzed traffic

enabled  blocked | Shaper state



BLS 2/3

= Compare worst-case end-to-end latency guarantees of (all) 5 latency- rxp::is
critical traffic streams N

= TSN/BLS can give comparable worst-case guarantees as AVB @ :’:drlaag:
= Allowing large bursts in TSN/BLS - large replenishment — - 25%
intervals - longer shaper blocking L min.

Only small bursts allowed. Smaller, | Large bursts allowed. Larger,
n\'/:3 but more frequent shaper blocking | less frequent shaper blocking
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BLS 3/3

— Ethernet TSN’s burst-limiting shaper
 Enforce bandwidth limits
* Allow bursts of certain size

— Presented complete formal worst-case analysis for
Ethernet TSN/BLS

« End-to-end latencies, buffer sizes (not part of this
presentation)

— Key takeaways for TSN/BLS
« TSN/BLS allows better shaper control than AVB

* No advantage of using TSN/BLS over AVB from a worst-
case perspective

— Shaper delay proportional to the bandwidth limit
« Shaping has significant impact on worst-case guarantees
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SDN 1/4

= Goal: derive timing guarantees
= Model SDN in compositional performance analysis framework [Henia2005]
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SDN 2/4

= Setup: SDN traffic on highest priority, variable number SDN requests, request
sizes, and execution times

Smaller execution Larger execution
times times

Worst-case latency
guarantee in [ms]
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SDN 3/4

= Setup: variable SDN traffic priority, 8 SDN requests per switch, variable
request sizes and execution times

=
N
=
N

[
[
o

Worst-case latency
guarantee in [ms]

O N B~ OO ©

k4

SDN appears to be a viable
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SDN 4/4

= Software Defined Networking is an interesting approach to solve the requirements
of future automotive networks

= Freedom from interference (I1SO 26262)
= Redundancy control

= Evaluated the general suitability of SDN for real-time applications
= Typical automotive setup
= SDN network reconfiguration times are less than 13 ms
= Impact on normal traffic latencies are less than 3 ms (not shown here)

= Key takeaways
= Formal timing analysis of SDN is possible
= SDN is fast enough for real-time networks

= Towards SDN for automotive networks (SAFURE project, www.safure.eu)
= Protocol design
= SDN controller is single point of failure




